Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Drones are becoming increasingly valuable tools in wildlife studies due to their ability to access remote areas and offer high-resolution information with minimal human interference. Their application is, however, causing concern regarding wildlife disturbance. This review synthesizes the existing literature on how animals within terrestrial, aerial, and aquatic environments are impacted by drone disturbance in relation to operational variables, sensory stimulation, species-specific sensitivity, and physiological and behavioral responses. We found that drone altitude, speed, approach distance, and noise levels significantly influence wildlife responses, with some species exhibiting increased vigilance, flight responses, or physiological stress. Environmental context and visual cues are also involved in species detection of drones and disturbance thresholds. Although the short-term response to behavior change has been well documented, long-term consequences of repeated drone exposure remain poorly known. This paper identifies the necessity for continued research into drone–wildlife interactions, with an emphasis on the requirement to minimize disturbance by means of improved flight parameters and technology.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available November 9, 2025
- 
            Abstract Drones are increasingly popular for collecting behaviour data of group‐living animals, offering inexpensive and minimally disruptive observation methods. Imagery collected by drones can be rapidly analysed using computer vision techniques to extract information, including behaviour classification, habitat analysis and identification of individual animals. While computer vision techniques can rapidly analyse drone‐collected data, the success of these analyses often depends on careful mission planning that considers downstream computational requirements—a critical factor frequently overlooked in current studies.We present a comprehensive summary of research in the growing AI‐driven animal ecology (ADAE) field, which integrates data collection with automated computational analysis focused on aerial imagery for collective animal behaviour studies. We systematically analyse current methodologies, technical challenges and emerging solutions in this field, from drone mission planning to behavioural inference. We illustrate computer vision pipelines that infer behaviour from drone imagery and present the computer vision tasks used for each step. We map specific computational tasks to their ecological applications, providing a framework for future research design.Our analysis reveals AI‐driven animal ecology studies for collective animal behaviour using drone imagery focus on detection and classification computer vision tasks. While convolutional neural networks (CNNs) remain dominant for detection and classification tasks, newer architectures like transformer‐based models and specialized video analysis networks (e.g. X3D, I3D, SlowFast) designed for temporal pattern recognition are gaining traction for pose estimation and behaviour inference. However, reported model accuracy varies widely by computer vision task, species, habitats and evaluation metrics, complicating meaningful comparisons between studies.Based on current trends, we conclude semi‐autonomous drone missions will be increasingly used to study collective animal behaviour. While manual drone operation remains prevalent, autonomous drone manoeuvrers, powered by edge AI, can scale and standardise collective animal behavioural studies while reducing the risk of disturbance and improving data quality. We propose guidelines for AI‐driven animal ecology drone studies adaptable to various computer vision tasks, species and habitats. This approach aims to collect high‐quality behaviour data while minimising disruption to the ecosystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
